Printed Pages - 6

Roll No. :

328651(28)

B. E. (Sixth Semester) Examination April-May 2021

(New Scheme)

(Et & T Engg. Br.)

DIGITAL SIGNAL PROCESSING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.

Unit - I

1. (a) Define convolution.

(b) Compute circular periodic convolution of the two

sequences
$$x_1(n) = \{1, 1, 2, 2\}$$
 and $x_2(n) = \{1, 2, 3, 4\}$.

7

- (c) Given $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, find X(k) using DITFFT algorithm.
- (d) Given: $X(k) = \{36, -4 + j9 \cdot 656, -4 + j4, -4 + j1 \cdot 656, -4, -4 j1 \cdot 656, -4j4, -4 j9.656\}$ find x(n).

Unit-II

- 2. (a) Define canonic and Non-canonic structures.
 - (b) Determine the direct form I realisation for a third order IIR transfer function.

$$H(z) = \frac{0.28z^2 + 0.319z + 0.04}{0.5z^3 + 0.3z^2 + 0.17z - 0.2}$$

(c) Obtain a cascade realisation of the system characterised by the transfer function

$$H(z) = \frac{2(z+2)}{z(z-0\cdot1)(z+0\cdot5)(z+0\cdot4)}$$

(d) Determine the parallel realisation of the IIR digital filter transfer functions.

$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z+1)(z+2)}$$

Unit-III

- 3. (a) List advantages of FIR filter over IIR filter.
 - (b) A low-pass filter is to designed with the following desired frequency response.

$$H_d(e^{jw}) = \begin{cases} e^{-j2w}, & -\pi/4 \le w \le \pi/4 \\ 0, & \pi/4 < |w| \le \pi \end{cases}$$

Determine the filter coefficients $h_d(n)$, if the window function is defined as

$$w(n) = \begin{cases} 1 & , & 0 \le n \le 4 \\ 0 & , & \text{otherwise} \end{cases}$$

determine filter coefficients of the designed filter h(n).

2

7

7

(c) The desired response of a low pass filter is

$$H_d(e^{jw}) = \begin{cases} e^{-j3w}, & -3\pi/4 \le w \le 3\pi/4 \\ 0, & 3\pi/4 < |w| \le \pi \end{cases}$$

Determine $H(e^{jw})$ for M = 7 using a Hamming window.

(d) Describe the filter design procedure using Kaiser window function.

Unit-IV

- 4. (a) Define frequency warping.
 - (b) Convert the analog filter into a digital filter whose system function is:

$$H(s) = \frac{s + 0 \cdot 2}{\left(s + 0 \cdot 2\right)^2 + 9}$$

Use the impulse invariant technique.

Assume
$$T = 1s$$
.

(c) Design a digital Butterworth filter that satisfies the following constraint using bilinear transformation. $0 \cdot 9 \le \left| H\left(e^{jw}\right) \right| \le 1 \qquad 0 \le w \le \pi/2$ $\left| H\left(e^{jw}\right) \right| \le 0 \cdot 2 \qquad 3\pi/4 \le w \le \pi$

(d) Design a digital Chebyshev filter to satisfy the constraints

[5]

$$0.707 \le \left| H\left(e^{jw}\right) \right| \le 1 \quad 0 \le w \le 0.2\pi$$
$$\left| H\left(e^{jw}\right) \right| \le 0.1 \quad 0.5\pi \le w \le \pi$$

Using bilinear transformation and assuming T = 1s 7

Unit - V

- 5. (a) Define upsampler and downsampler.
 - (b) Obtain the expression for the output y(n) in terms of x(n) for the multirate systems given as follows:

$$x(n) \rightarrow \boxed{\uparrow 5} \rightarrow \boxed{\downarrow 20} \rightarrow \boxed{\uparrow 4} \rightarrow y(n)$$

(c) Obtain the polyphase decomposition of the IIR system with transfer function :

2

$$H(z) = \frac{1 - 4z^{-1}}{1 + 5z^{-1}}$$

(d) Obtain the two-fold expanded signal y(n) of the input signal x(n).

$$x(n) = \begin{cases} n, & n > 0 \\ 0, & \text{otherwise} \end{cases}$$

at mil minimum lime minimum in minim grand

Unit - W - Matt

man or (a) Complex or the expression of the relation (b) in serior

(u) Obtain the volvestase decompression of the ITR.